First, please tell us information about the data you would like to download by completing and submitting the form below. This has to be done in order to enable the check boxes in the model output table (bottom one).
For "Variables you need", please type any character(s), wait for a second and it will show you a list of available variables whose name contains your character(s). Then click on a variable and add it to the list. Repeat this step to add more variables of interest.
Then check those simulations and time resolutions you need.
Fill other required information and click "Submit". We will try to search the MsTMIP model output repository to find all the model output matching your needs.
If successful, you will see a message "Thank you. You can now download MsTMIP output data using the links below". In the model output table below, check boxes will be enabled and certain simulations will be provided with hyperlinks. These are simulations that match your needs. If you select multiple variables, a simulation will be hyperlinked as long as it contains any one of the variables. You can follow these hyperlinks to download output files. We provide output files in netCDF v4 with internal compression only. Please make sure your computer has appropriate netcdf library installed.
If you want to download output of another model for which we do not find a match, you can manually turn on the check box on the left, we will enable the hyperlinks on those simulations/time resolutions you select. You can then use these links to download output files.
You are welcome to modify your information and click "Tell us" again.
These links will expire after 7 days. If you need to access the MsTMIP output files after 15 days, simply come back to request access again.
Notes:
Please use the model output table to browse through all the available models and simulations.
Please click on the " MODELNAME" to see information of a model, e.g. contact, citations, and NEE treatment.
We kindly ask you to provide some information about this download Please fill information in this section first to enable the checkboxes
Summary of MsTMIP Model Output Data Repository (v1.0)
Model
Temporal Resolution
Simulation
Variables created by Models
BIOME-BGC
BIOME-BGC
Contacts:
Weile Wang (weile.wang@gmail.com)
Citations:
Thornton et al. (2002) Modeling and measuring the effects of disburbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agriculture and Forest Meteorology, 113, 185-222.
Kowalczyk, E. A., Y. P. Wang, R. M. Law, H. L. Davies, J. L. McGregor, and G. Abramowitz (2006), The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline modelRep., CSIRO, Aspendale, Victoria, Australia.
N/A in this release
CABLE-JPL
CABLE-JPL
Contacts:
Josh Fisher (jbfisher@jpl.nasa.gov)
Citations:
Kowalczyk, E. A., Y. P. Wang, R. M. Law, H. L. Davies, J. L. McGregor, and G. Abramowitz (2006), The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline modelRep., CSIRO, Aspendale, Victoria, Australia.
N/A in this release
CLASS-CTEM-N
CLASS-CTEM-N
Contacts:
Altaf Arain (arainm@mcmaster.ca)
Citations:
S. Huang, M. A. Arain, V. Arora, F. Yuan, J. Brodeur, M. Peichl, 2011. Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS-CTEMN+ model, Ecological Modeling, 222(20–22): 3743–3760, http://dx.doi.org/10.1016/j.ecolmodel.2011.09.008.
Mao, Jiafu, Peter E. Thornton, Xiaoying Shi, Maosheng Zhao, Wilfred M. Post, 2012: Remote Sensing Evaluation of CLM4 GPP for the Period 2000–09. J. Climate, 25, 5327–5342. doi: http://dx.doi.org/10.1175/JCLI-D-11-00401.1
Shi, X., Mao J., Thornton P. E., HOFFMAN F. O. R. R. E. S. T. M., & Post W. M. (2011). The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow. Geophysical Research Letters. 38(8). doi: 10.1029/2011GL046773
Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Hoffman, Forrest M.; Zhu, Zaichun; Myneni, Ranga B. 2013. "Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982–2009." Remote Sens. 5, no. 3: 1484-1497.
Li, H., M. Huang, M. S. Wigmosta, et al. 2011, Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed, J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.
Tian, H., X. Xu, C. Lu, M. Liu, W. Ren, G. Chen, J. Melillo, and J. Liu (2011), Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming, J. Geophys. Res., 116, G02011, doi:10.1029/2010JG001393.
Tian, HQ, G. Chen, C. Zhang, M. Liu, G. Sun, A. Chappelka, W. Ren, X. Xu, C. Lu, S. Pan, H. Chen, D. Hui, S. McNulty, G. Lockaby and E. Vance. 2012. Century-scale response of ecosystem carbon storage to multifactorial global change in the Southern United States. Ecosystems 15(4): 674-694, DOI: 10.1007/s10021-012-9539-x
Grant, R.F., Barr, A.G., Black, T.A., Margolis, H.A., Dunn, A.L., Metsaranta, J., Wang, S., McCaughey, J.H. and Bourque, C.P.-A. 2009. Interannual variation in net ecosystem productivity of Canadian forests as affected by regional weather patterns – a Fluxnet-Canada synthesis. Agric. For. Met. 149:2022–2039.
Grant, R.F., Desai, A. and Sulman, B. 2012. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9: 4215–4231
Grant, R.F. Baldocchi, D.D. and Ma, S. 2012. Ecological controls on net ecosystem productivity of a Mediterranean grassland under current and future climates. Agric. For Meteorol. 152: 189– 200.
Levy, P. E., M. G. R. Cannell, and A. D. Friend (2004), Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink, Global Environmental Change, 14, 21-30.
Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht, W, Sykes M, Thonicke K, Venevsky S 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Global Change Biology 9: 161–185.
Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M & Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Gl Ch Biol 13:679-706,
Poulter, B, L Aragao, U Heyder, Gumpenberger, M, F Langerwisch, A Rammig, K Thonicke and W Cramer. 2010. Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 16(7):2062-2075.
C. Daly, D. Bachelet, J.M. Lenihan, R.P. Neilson, W.J. Parton, and D. Ojima.Dynamic Simulation of Tree-Grass Interactions for Global Change Studies. Ecological Applications 10(2):449-469.
Bachelet D., R.P. Neilson, T. Hickler, R.J. Drapek, J. M. Lenihan, M.T. Sykes, B. Smith, S. Sitch, and K. Thonicke. 2003. Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles 17(2): 1045 DOI:10.1029/2001GB001508.
Bachelet D., R.P. Neilson, J. M. Lenihan, and R.J. Drapek. 2001. Climate change effects on vegetation distribution and carbon budget in the U.S. Ecosystems 4:164-185.
N/A in this release
ORCHIDEE-JPL
ORCHIDEE-JPL
Contacts:
Citations:
Krinner, G., Viovy, N., Noblet-Ducoudre, N. de, Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015.
Krinner, G., Viovy, N., Noblet-Ducoudre, N. de, Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015.
Nicholas C. Parazoo (nicholas.c.parazoo@jpl.nasa.gov)
Citations:
Baker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. da Rocha (2008), Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res., 113(G1), G00B01.
Schaefer, K., G. J. Collatz, P. Tans, A. S. Denning, I. Baker, J. Berry, L. Prihodko, N. Suits, and A. Philpott (2008), Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model, J. Geophys. Res., 113, G03034, doi:10.1029/2007JG000603.
Schaefer, K., T. Zhang, A. G. Slater, L. Lu, A. Etringer, and I. Baker (2009), Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model, J. Geophys. Res., 114, F02021, doi:10.1029/2008JF001125.
Hayes, D.J., A.D. McGuire, D.W. Kicklighter, K.R. Gurney, T.J. Burnside, and J.M. Melillo (2011), Is the northern high latitude land-based CO2 sink weakening? Global Biogeochemical Cycles, 25(3), GB3018, doi:10.1029/2010gb003813.
Peng, C.H., Zhu, Q.A and H. Chen, 2011. Integrating greenhouse gas emission processes into a dynamic global vegetation model: TRIPLEX-GHG model development and testing, In: procceding of ISEM 2011 Conference, pp76
Ito, A. (2010), Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: Implications for long-term monitoring from a process-based model, J.Plant Res., 123, 577-588, doi:10.1007/s10265-009-0305-x.
Ito, A. (2008), The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data, Agricultural and Forest Meteorology, 148(5), 738-747, doi:10.1016/j.agrformet.2007.12.007.