



### CO<sub>2</sub> Flux Measurement Uncertainty Estimates for the NACP Site-Level Interim Synthesis

Alan Barr<sup>1</sup>, David Hollinger<sup>2</sup>, Andrew Richardson<sup>3</sup>, and the NACP Site-Level Synthesis Participants

> <sup>1</sup> Environment Canada, <sup>2</sup> USDA Forest Service, <sup>3</sup> Harvard University



### Outline

- Background
- NEP (= -∫NEE) uncertainty associated with u<sup>Th</sup> uncertainty
- NEP random uncertainty
- Summary



# **Purpose of this Talk**

- Update community on progress (work in progress)
- Solicit feedback



### Eddy-Covariance (EC) Measurement Uncertainties

#### **Random uncertainty**

- associated with random measurement noise
- can be characterized using:
  - similar periods on consecutive days
  - proximate paired towers
  - highly-tuned (gap-filling) model output
- NOT negligible at the annual time scale

Systematic uncertainty

- Iess well understood, less easily characterized
- caused by inadequate EC system design or violation of EC assumptions (as seen in, e.g., under-measurement at low windspeeds (*u*<sub>\*</sub> or σ<sub>w</sub> filtering); energy balance non-closure; cold-air drainage or other 3D flow regimes)

# Quantifying NEP Uncertainty Related to the Low-*u*<sup>\*</sup> NEE Exclusion Threshold *u*<sup>\*</sup>

(adapted from Papale et al. 2006 with modifications)

 Estimate u<sup>Th</sup> and its uncertainty using change-point detection

NEP (=-NEE)

- stratify each year into 4 seasons and each season into 3-7 temperature classes
- plot binned NEE vs. u and evaluate the change-point for each stratum
- aggregate all stra
- Bootstrap 1,000 t
- Pool estimates fr
- Fill gaps in NEE all values of u<sup>Th</sup>
- Estimate NEP un intervals from 2.

 $u_{+}$  (m s<sup>-1</sup>)

### 95% Confidence Intervals in the $u_*^{Th}$ in Relation to $u_*^{Th}$



### List of Sites

### **NACP Site-Level Interim Synthesis**

| Land Cover                                 | Canada                                          | USA                              |
|--------------------------------------------|-------------------------------------------------|----------------------------------|
| Permanent Wetland (2)                      | CAMer CAWP1                                     |                                  |
| Cropland (5)                               |                                                 | USARM USIB1 USNe1,2,3            |
| Shrubland/Savanna (3)                      |                                                 | USLos USSO2 USTon                |
| Grassland (4)                              | CALet                                           | USIB2 USShd USVar                |
| Juvenile Forest (6)                        | CACa2,3 CASJ1,2                                 | USMe3,5                          |
| Mature Evergreen<br>Needleleaf Forest (12) | CACa1 CANS1 CAObs<br>CAOjp CAQfo CASJ3<br>CATP4 | USDk3 USHo1 USMe2,4<br>USNR1     |
| Mature Deciduous<br>Broadleaf Forest (6)   | CAOas                                           | USHa1 USMMS USMoz<br>USUMB USWCr |
| Mature Mixedwood<br>Forest (4)             | CAGro                                           | USDk2 USPFa USSyv                |

### Median *u*<sup>\*</sup> Grouped by Land Cover

| Land Cover                         | Mean ± S.D. (n)  |
|------------------------------------|------------------|
| Permanent Wetland                  | 0.12 ± 0.00 (2)  |
| Cropland                           | 0.19 ± 0.06 (5)  |
| Shrubland & Savanna                | 0.20 ± 0.05 (3)  |
| Grassland                          | 0.21 ± 0.05 (5)  |
| Juvenile Forest                    | 0.20 ± 0.07 (6)  |
| Mature Evergreen Needleleaf Forest | 0.38 ± 0.13 (11) |
| Mature Deciduous Broadleaf Forest  | 0.40 ± 0.07 (6)  |
| Mature Mixedwood Forest            | 0.41 ± 0.07 (3)  |

### Percentage of Nighttime Net Ecosystem Exchange NEE Data Excluded by the Median *u*\*<sup>Th</sup>



### u<sup>\*</sup><sup>Th</sup>-Related Uncertainty in Annual NEP (95% Confidence Interval, g C m<sup>-2</sup>) in Relation to Annual NEP



### Quantifying Random Uncertainty

(annual analysis following Richardson et al. 2006, 2007)

- Quantify NEE random uncertainty curve
- Apply Monte-Carlo process
  - Begin with gap-free synthetic data from Fluxnet-Canada gapfilling model
  - Add random noise
  - Fill gaps
  - Repeat 1,000 times
  - Calculate uncertainty at different time scales as 95% confidence intervals from 2.5 and 97.5 percentiles



### **Random Uncertainty in NEE**

(showing  $\mu$  ( $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) from a double exponential distribution in relation to gap-filling NEEHat)



#### Random Uncertainty in Annual NEP (95% Confidence Interval, g C m<sup>-2</sup>) in Relation to Annual NEP



**Ameriflux 2009** 

#### Random Uncertainty in Annual NEP (95% Confidence Interval, g C m<sup>-2</sup>) in Relation to Ecosystem Respiration RE



#### Random Uncertainty in Annual NEP (95% Confidence Interval, g C m<sup>-2</sup>) in Relation to Annual RE: Forest Sites



#### Random Uncertainty in Annual NEP (95% Confidence Interval, g C m<sup>-2</sup>) in Relation to Annual RE: Non-Forest Sites



### Why Inter-Site Differences? Two possibilities to explore:

- 1. It's in the data.
  - Differences in system design or data processing?
  - Differences in site characteristics?
- 2. It's in the processing.
  - Poor performance of Fluxnet-Canada gap-filling method at some sites causing overestimation of random errors.

# Summary

- *u*<sup>Th</sup> is well defined at most sites.
- Mean nighttime NEE exclusion of 59%.
- Overall NEP uncertainties (g C m<sup>-2</sup> yr<sup>-1</sup>, mean ± s.d.):
  - random: 30 ± 16
  - $u_{*}^{Th}$  related: 18 ± 16
- Both uncertainties scale with RE but some sites have higher uncertainties than others.



# Next Steps ...

- Explore differences among sites.
- Repeat random uncertainty analysis with other gapfilling methods.
- Get feedback from site PIs, identify problems and weaknesses, complete a second analysis at some sites.
- Extend u<sup>Th</sup>. analysis to entire FLUXNET database.

