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Background: The North American Carbon
Program (NACP)



NACP Questions

What is the carbon balance of North America and
adjacent oceans? What are the geographic
patterns of fluxes of CO,, CH,, and CO? How is
the balance changing over time? (“Diagnosis™)

What processes control the sources and sinks of
CO,, CH,, and CO, and how do the controls
change with time? (“Attribution”)

Are there potential surprises (could sources
Increase or sinks disappear)? (“Prediction”)

How can we enhance and manage long-lived
carbon sinks ("sequestration"), and provide
resources to support decision makers?
(“Decision support”)

Howwh Amserican Carbon Program Demplements ion Sratepy Grosn
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US Carbon Cycle Science Plan
Goals, 1999

1. Quantify and understand the Northern Hemisphere
terrestrial carbon sink. ORIGIN OF THE NACP

2. Quantify and understand the uptake of
anthropogenic CO, In the ocean.

3. Determine the impacts of past and current land use
on the carbon budget.

4. Provide greatly improved projections of future
atmospheric concentrations of CO.,.

5. Develop the scientific basis for societal decisions
about management of CO, and the carbon cycle.

Sarmiento and Wofsy, 1999



Motivation

1. Curiosity

2. Climate and carbon management
— Reduce the uncertainty in current and future carbon fluxes to
inform policy.
3. Regulatory support

—  Provide an operational analysis system that can quantify regional
carbon emissions.

—  Provide tools for evaluating potential carbon management
strategies (potential storage, stability of storage).

—  Provide tools for verifying sequestration of carbon.



Pre-NACP results

* Coarse temporal (multi-year) and spatial
(continental) resolution.

« Consistency In N. American net CO, flux among
methods (order 0.5 PgC yr-1) at these
resolutions.

« “Large” uncertainty in the N. American CO,,
balance (few tenths of a PgC yr-1) at these

resolutions.
Pacala et al (2001); Gurney et al (2002); SOCCR report (2007).

Can we reduce this uncertainty, and move to finer
spatial (ecoregions, political units) and temporal
resolution (individual years, maybe months)?



Methods



Interim syntheses underway

Regional/continental comparison

— Atmospheric inversions, biogeochemical or “forwards”
models, biomass inventories.

— Part or all of N. America.

Site-based model-data comparison
— Flux towers, biogeochemical models.
— Flux tower sites.

Midcontinent intensive regional synthesis

— Atmospheric inversions, biogeochemical models, biomass
Inventories.

— “Greater lowa” region.
Non-CO, greenhouse gas synthesis
Coastal ocean carbon cycle synthesis
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Why “Interim” syntheses?

 NACP Iinvestigators (and many international
colleagues - thank you!) have generated many
parallel estimates of the N. American CO2

balance.

 We (the NACP research community) wished to:
— create a benchmark for the future, and to

— exercise our ability to synthesize results from multiple
models and methods.

* The results to date imply that we aren't
“finished.” (half-empty?)



Atmospheric inversion example -
NOAA’s Carbon Tracker
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Biogeochemical or “forwards” model
example: Potter et al., 2007: CASA

— m msssm Figure 8.
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Flux tower upscaling example
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Overall goals of the NACP
Interim syntheses

Evaluate current ability to diagnose carbon
fluxes at site and continental scales using
multiple methods.

Provide a benchmark for future progress.

(Temporal focus: 2000-2005)



Results to date

 Regional synthesis
— Aggregated continental-scale fluxes (Jacobson)
— Spatial patterns (Huntzinger)
— Inventory comparison (Hayes)

e Site synthesis

— Interannual, seasonal and diurnal cycles (Ricciuto,
Schaeffer, Thornton, Raczka)

— Link to regional synthesis (Raczka)

e Midcontinent intensive
— Promise of well-constrained inversions (Miles, Butler)



Regional interim synthesis results

See also:

Jacobson, T2-045

Huntzinger, T2-077

Fall 2009 AGU session, interim syntheses
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“Forwards” models - monthly NEE
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Model runs are “out of
the box.” Driver data
(e.g. meteorology) will
differ across models.

Annual NEE is not
necessarily
comparable across
models as models
differ in processes
simulated (e.g. SiB3
annual NEE is set to
Zero).

Large variability exists
across models in both
monthly and annual
NEE.

(Half empty? -
variance.

Half full? - ‘out of the
box’ + comparison)
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“Inverse” models - monthly NEE
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Gray lines are
TRANSCOM
results. Colored
lines are more
recent inversions
(also “out of the
box”).

More coherence
among inversions as
compared to
forwards models?

LOTS of models!
(half full)



Annual NEE (PgClyear)
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“Forwards” models - annual NEE
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“Inverse” models - annual NEE
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Annual NEE is
highly variable
across inversions.

Evidence of
covariance in boreal
vS. temperate N.
America?

0.5 PgC yr-1
uncertainty bound
may be optimistic?

Evidence of
coherence in the
interannual
variability.



“Forwards” models vs. Inverse models - interannual variability
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Monthly GPP (PgC/month)
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“Forwards” models - monthly GPP
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Incredibly(?) large
range of GPP
estimates across
forwards models.
Factor of 4.

(half empty?)



IAV of GPP (PgClyear)

IAV of GPP (PgClyear)

“Forwards” models - interannual variability in GPP
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Impressive degree of
coherence across
models, especially in
boreal N. America
and for 2002 vs. 2004
in temperate N.
America.

(half full!)

Similar to the
coherence found in
NEE for both forwards
and inverse models.



Annual NEE - forwards and inverse models - 2002

Across Model Mean Across Model Standard Deviation

Drought
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Similarity
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central N.
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response.
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Annual NEE - forwards and inverse models - 2004

Across Model Mean Across Model Standard Deviation Productive year

Larger
productivity in
inverse
estimates.

Forward
Models
N=12

High
uncertainty in
central Canada
in forwards
models, in SE
In Inverse
estimates.

Inverse
Models

N=4

Modest
coherence
across
methods.
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Which fluxes are correct?
What is our reference for ground-truthing? Calibration?
(half empty!)

Try as reference points:
- biomass inventories
- flux towers



The NACP Regional Interim Synthesis
“Fast-Track Analysis”

examining the ability of forward and inverse models to
iIdentify sources and sinks of C for the North American
continent by comparing model estimates with inventory-
based estimates of forest C stocks and crop yields



NACP Model — Inventory Comparison

Change in Total Forest Sector C Stocks from Mean Model Estimates for Forest Sector
Inventory-based Estimates Net C Exchange (NEE)

Avg. Annual Flux (TgC yr), 2000 - 2006

nodata < -10 -5 -1 +1 +5 +10 >

* negative values represent a land-based C sink
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Site interim synthesis results



Flux Tower Sites

NACP Interim Site Synthesis

First Priority Sites

A Initial 10
A First Priority
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Participating Models

« BEPS

« CNCLASS
e ISOLSM

e TECO

* €COSYS
 SIBCASA

* SiB

e DLEM

e ED2

« LOTEC_DA

« DNDC

e SIBCrop

e can-ibis

« EDCM

« ORCHIDEE
e LPJ
 BIOME-BGC
« SSiB2

e TRIPLEX

* AgrolBIS

Results from >20
models

Order 10+
simulations per site

Common driver data
used for all models

Many models
participating in both
regional and site
syntheses

Models are not
formally optimized
to fluxes save for
LOTEC_ DA
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NEE seasonal mean diurnal cycle
(Howland forest example)

US—Ho1

m— Observed
CNCLASS
ISOLSM
TECO
ecosys
SIiBCASA

SiB

- - = ED2

- = = AgrolBIS
SiBcrop

= = = can—ibis

1= = ORCHIDEE
ss8iB2

m—— |\/EAN

1 1
5 10
Hour (LST)

|
15

1
20




GPP seasonal mean diurnal cycle
(Howland forest example)
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NEE multi-year mean seasonal cycle
(Howland example)
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GPP multi-year mean seasonal cycle
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Respiration multi-year mean seasonal cycle
(Howland Forest example)
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Inter-annual variability in annual NEE
Site and re='~nal model runs.

Correlation coefficient:

Regional model
“extracts” show little
correlation with flux tower
observations.

Site level model runs
show weak correlation
with tower observations.
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Inter-annual variability in annual NEE

Site and.

Magnitude of IAV:

Regional model runs
tend to underpredict IAV
as compared to flux
towers.

Site model runs show
AV that is similar in
magnitude to the flux
tower observations.

(just a product of spatial
averaging in regional
model “extracts?”)

raninnal model runs.
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Imminent improvements in atmospheric inversions
due to increased data density?



CO, Concentration Network: 2000
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CO, Concentration Network: 2004
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CO, Concentration Network: 2005
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CO, Concentration Network: 2006
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CO, Concentration Network: 2007
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CO, Concentration Network: 2008
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MCI region CO, seasonal cycle
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Conclusions

* Vigorous comparison of multiple models at
multiple scales is underway.

e Encouraging coherence in interannual variability
In continental annual NEE across models.

e Flux tower and biomass inventory data show
promise for providing “ground truth.”

* Increased atmospheric CO2 data density over N.
America likely to have a large impact on
atmospheric inversions post 2005.

Kenneth Davis, The Pennsylvania State University, davis@meteo.psu.edu
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