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Soil Carbon Formulation:
1st Order with Nitrogen

1st Order w/out Nitrogen
-The models formulated with nitrogen

All Sites, Monthly Re, (gC/m?/month)

What regional models capture the observed
magnitude of carbon fluxes?

Concurrent analyses within this NACP activity uncovered a wide

North American Carbon Program Interim
Synthesis Activity

The NACP Interim Synthesis Activity is a collaboration
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_ : are more limited in the magnitude of \
of terrestrial carbon modelers and analysts to collect a range (5-25 PgC/year) for temperate North American GPP respiration. This is consistent with the £ __ % A
broad range of model output and eddy covariance flux (Huntzinger et al, in prep). idea that respiration is limited by T B — s

nitrogen content, and with the findings

tower observations. Regional terrestrial carbon model | _
of Huntzinger et al. (in prep).

: . . . The target diagram on the left includes
output is especially important to quantify the carbon flux

all sites for each model. The models

All Sites, Annual GPP (gC/m2/year)

balance across continental spatial domains. These models - + itz range from -50% to +50% of the Do the regional models capture inter-annual
also help to attribute regions of carbon sources/sinks to $== || Observations, and are centered near a C L eper
_ _ _ g o «su — pias of zero. The Can-IBIS model had Var|ab|||ty N NEE?
the atmosphere and provide valuable information about ¢ s an unusually large bias and was not
carbon cycle dynamics. &< considered here. See table below for - A St eI NEE i i S A Pearsg” Co”i'at'olrl‘ Cozﬁ'f'e.”;.thatt
. . . T VEGAS2 detailed description. +(B’E§E§.$riﬁ§”2 °° i "' . S surrounds zero 1or aill models Indicates
In general, regional mod_el performance is Cha!lenglng o e P B T eSS ittle to no skill at predicting the year
to evaluate for lack of continental scale observations of The best perform -zt to year variability in NEE. Again, the
. . 2 e pesSl perrormin e :
carbon flux. Here, we use gap-filled carbon flux integrals = R e e iols i torms ofgross e crossover models can help determine
derived from flux tower observations to evaluate reg jonal fluxes are in green. Most R Ima—s: _ Schanm) whether this finding is an artifact of the
: tcrp O B . Standard model structure or model protocol (below).
modeled extracts of photosynthesis (GPP), total models predict less carbon
oy - uptake than the flux tower Within-Ste Annual Corelation (R-value]
respiration (Re) and NEE (net ecosystem exchange) The annual correlation is much e oV -

observations (annual NEE).

Min Max Mean A Min Max Mean A Min Max Mean A

at annual and monthly temporal resolution. improved for the gross fluxes

and modestly improved for

Do differences in the model run protocol NEE. This suggests the poor

inﬂuence the resu|ts? correlation values for the

‘ , _ _ regional models is only in part [ e
We use the ‘crossover' models to help diagnose the impact due to the model structure. —
that the meteorological driver data, vegetation maps and
spin-up procedures may have had upon the modeled fluxes.
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Model-Data Comparison Setup:

-Flux Tower Sites: 36 North American sites consisting of
6 crop, 10 deciduous broadleaf (DBF), 4 boreal evergreen
needleaf (ENFB), 6 temperate evergreen needleleaf
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Additional Findings:

(ENFT), 3 grass, 7 miscellaneous (MISC). The MISC . .
: sts of shrubland. tund d fland sit gC/m2/year For all vegetation types the regional o o |
grouping consists of shrubland, tundra and wetland sites. ws s | ws s | ws s | models are more positively biased -The within-site standard deviation for monthly integrals
| w | ., | » . | thantheir site counterpart runs for (all fluxes) is greater for the regional models as compared
_Regional MOdels: Regional Models | Meteorology Driver Phenology Photosynthesis Soil Decomp. - res;ti((:n 19057 . 523; e 6232 e the grOSS ﬂuxes The reg|ona| runs tO the Slte mOdels, Whereas the annual |ntegra|S are abOUt
BEPS* N/A MODIS LA £ Ist order, w/N e 137 162 260 also predict more of a carbon sink the same.
The 17 models use a CASA-GFED | IIASA, GISSTEMP, and | GIMMS NDVI LUE 1st order crop "B | T o | Sl e | DL o6 (NEE) in general. Clearly, the
. CASA-Trans Leemans & Cramer GIMMS NDVI LUE 1st order - 7 508 500 . y . .
variety of weather products | - cw.cas Ne? prognostic K 15t order e T ;o ®m | @ | g ' model brotocol -The regional models are better able to capture across-site
(radlatlon reC| t t CLM-CN NCEP Prognostic EK 1st order, w/N region 50 382 4728 I erences In mo e pro OCO f - - - . - . = -
, precipitation), Can-Bist | Canadianfssp |  Prognostic » st order ws S | wo® | s | % | gianificantly influence the results. lux variability as compared to within-site variability by
photosynthetic formulations | o | wamsemsw | prograstic || e | astorden wi wse |2 g | |8, measure of correlation coefficient.
(enzyme-klneth, I|ght use ISAM* Mitchell et al. (2005) ’. LUE’ 1st order, w/N
efficiency) and soil i PRisw prognostc | Stotstical | 1t orden, win ’ i ated that the observed _ -Site level models outperform regional models in almost
decomposition formulations | M%7 |Ewimerim eanayis| MODSLAL | WE | ceroorder 1""28 antcipate " a eho SOIVEY i AN e all statistical criteria. The unusually large positive bias for
(nltrogen, no nltrogen) Orchidee* CRUO5/NCEP Prognostic EK 1st order, w/N 5- /0 pOS|t|Ve. IaS In t e Incomlng ;;30 \\\\x / CE,\LA!\_A(-ZQEIA OrTc;\i:I;e Can-IBIS re|nforces th'S reSUIt
The asterisks denote B e, | mesm || e SW regional radiation products \ por e | o
cross-over’ models that VEGAS2 | CRUOS/NCEP | Prognosic LU Ist order (Ricciuto et al, in prep) led to the \ o4 oo - LUE models outperform EK models and nitrogen inclusive
FE : : S \ SIB3 :
are run both across the continent and at individual sites. The site runs benefit positive bias in GPP and Re fluxes. = W [ models outperform non-nitrogen models overall.
from using site derived driver data whereas regional runs require regional rorisinaly. there are . Al Sites, Mority GPP, (gCimimonth) Al Sites, Moritiy Re, (gC/m’/month) . . .
e datg roducts 9 9 9 ::)Js ;ﬁgayr,]t’[ dieﬁgrzneces T | T - The top perfor_mlng regonal models overall that did not use
| J nees < =N\ [ data assimilation are CASA-GFED(V2) and Vegas2.

_ _ _ between models using :. \ : /// A\
Site level observations vs. regional model extracts: A caveat known biased radiation / \\ : /;/// \\ Conclusions:
Although we assume the site level flux observations to be reality, products. / N\ I AN . . .

J y — = - ™ -The regional model average provides the best estimate for

there are several potential sources for model-data mismatch e o
that are not inherently reflective of model performance:

- Representation Error: The site location may not represent the
overall vegetation or climate characteristics within the 1X1
degree region that is modeled.

-Vegetation Mismatch: The regional vegetation map may be
different than the actual site/region vegetation.

-Climate Mismatch: The regional climate product may differ
significantly from the actual site/region climate.

continental GPP. Individual model estimates are subject to
large deviations from the observations.

Does the model formulation influence
the carbon fluxes?

All Sites, Monthly GPP, (gC/m?/ month)

Phenology Formulation: e, /

Enzyme Kinetic (EK) vs 7\
Light Use Efficiency (LUE) £ ’ \
4

-EK models show equal and
///’ R

opposite bias as compared to LUE
Huntzinger et al. (in prep). 0° o mos

-Regional estimates of inter-annual variability should be
interpreted with great caution.

-Regionally derived driver data impairs the ability to
evaluate regional model performance based on structural
considerations alone.

-It is unclear what differences in model protocol contribute to
the weakening of regional model skill.

Model Formulation Average Flux

-To a limited extent we can address these issues with site level
model output, presumably immune to the above influences.

models. This is consistent with

N\

-The choice of driver data and choice of model are likely
equally as influential upon predicted fluxes.
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